

Mechanical Properties of Polypropylene from 3D Printing

Lu Wang and Douglas J. Gardner

Advanced Structures and Composites Center, the University of Maine, Orono, ME, USA, 04469

Introduction

Market share of PP

FDM device configuration

Molecular diffusion at interfaces

Objective

- 1. To learn how FDM processing parameters influence the mechanical properties of PP.
- 2. To anticipate how cellulose nanofibrils (CNFs) could improve the mechanical properties of printed PP.

Materials and methods

 $0.1 \text{mm} - 200^{\circ}$

Shapes of mechanical test specimens

Table 1. Experimental design

Method	Layer height/mm	extrusion temperature/°	
FDM	0.3	250	
	0.1	250	
	0.3	200	
	0.1	200	

Results and Discussion

Morphology

- - 0.3mm-

Density

Crystallography

Temperature(°C) 105 130 155 180 -0.15 -0.25 -0.35 -0.45 -0.45 -0.55 -0.55 -0.55 -0.1mm-250°C -0.1mm-200°C --0.1mm-200°C

DSC curves of PPs made by different parameters.

-0.65

XRD curves of PPs made by different parameters.

Table 2. β-crystal content in various printed PPs

Injection	0.3mm	0.1mm	0.3mm	0.1mm
molding	250°C	250°C	200°C	200°C
4.6	5.6	11.4	75.1	75.2

Mechanical properties

Impact fracture surface of PPs from various printing settings

specific tensile strength

specific tensile modulus

☐ specific flexural strength ☐ specific impact strength

0.3mm

250°C

-50.0

☐ specific flexural modulus

0.3mm

200°C

0.1mm

200°C

30.0 -10.0 --10.0 --30.0 -

Conclusions

0.1mm

250°C

- ☐ Smaller layer height and higher extrusion temperature led to smaller cell size but larger cell density.
- ☐ Printed PP was lighter than injection molded PP. Smaller layer height resulted in denser parts.
- \Box Both α and β type crystals exist in printed PP where the β content was much more predominant in PP printed at 200 °C.
- ☐ Compared to the injection molded PP, tensile and flexural strength decreased less for the PP printed at 0.1 mm and 250 °C, while the flexural modulus remained and impact strength decreased most.
- ☐ More interface breaks and plastic deformation were found in PP printed at lower temperature and smaller layer height.
- ☐ <u>CNFs</u> have the potential to at least enhance the modulus without compromising the impact strength of injection molded PP.

Acknowledgements

Funding was provided in part by the Maine Agricultural and Forest Experiment Station (MAFES) project ME0-M-8-00527-13 and the USDA ARS Forest Products Research Agreement 58-0202-4-003. Contact information: lu.wang@maine.edu